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Abstract

Aircraft taxiing on the surface contribute significantly to the fuel burn and emissions at
airports. This report is an overview of PARTNER’s Project 21, which tries to identify promising
opportunities for surface optimization to reduce surface emissions at airports, estimate the
potential benefits of these strategies, and assess the critical implementation barriers that need
to be overcome prior to the adoption of these approaches at airports. We also present a new
queuing network model of the departure processes at airports that can be used to develop
advanced queue management strategies to decrease fuel burn and emissions.

*This work was supported by FAA, NASA and Transport Canada under the Partnership for AiR Transportation
Noise and Emissions Reduction(PARTNER)



1 Introduction

Aircraft taxiing on the surface contribute significantly to the fuel burn and emissions at airports.
The quantities of fuel burned as well as different pollutants such as Carbon Dioxide, Hydrocarbons,
Nitrogen Oxides, Sulfur Oxides and Particulate Matter (PM) are proportional to the taxi times
of aircraft, in combination with other factors such as the throttle settings, number of engines that
are powered, and pilot and airline decisions regarding engine shutdowns during delays. In 2007,
aircraft in the Unites States spent more than 63 million minutes taxiing in to their gates, and over
150 million minutes taxiing out from their gates [10]; in addition, the number of flights with large
taxi-out times (for example, over 40 min) has been increasing (Table 1). Similar trends have been
noted at major airports in Europe, where it is estimated that aircraft spend 10-30% of their flight
time taxiing, and that a short/medium range A320 expends as much as 5-10% of its fuel on the
ground [7].

Number of flights with taxi-out time (in min)
< 20 20-39 40-59 | 60-89 | 90-119 | 120-179 | > 180
2006 | 6.9 mil | 1.7 mil | 197,167 | 49,116 | 12,540 | 5884 | 1,198
2007 | 6.8 mil | 1.8 mil | 235,197 | 60,587 | 15,071 7,171 1,565
Change | -1.5% | +6% +19% | +23% | +20% +22% +31%

Year

Table 1: Taxi-out times in the United States, illustrating the increase in the number of flights with large
taxi-out times between 2006 and 2007.

| Airport | Average taxi-out time (in min) |

JFK 37.1
EWR 29.6
LGA 29.0
PHL 25.5
DTW 20.8
BOS 20.6
IAH 20.4
MSP 20.3
ATL 19.9
IAD 19.7

Table 2: Top 10 airports with the largest taxi-out times in the United States in 2007 [22].

Operations on the airport surface include those at the gate areas/aprons, the taxiway system
and the runway systems, and are strongly influenced by terminal-area operations. The different
components of the airport system are illustrated in Figure 1. These different components have
aircraft queues associated with them and interact with each other. The cost per unit time spent
by an aircraft in one of these queues depends on the queue itself; for example, an aircraft waiting
in the gate area for pushback clearance predominantly incurs flight crew costs, while an aircraft
taxiing to the runway or waiting for departure clearance in a runway queue with its engines on
incurs additional fuel costs, and contributes to surface emissions.

The tazxi-out time is defined as the time between the actual pushback and takeoff. This is the
time that the aircraft spends on the airport surface with engines on, and includes the time spent
on the taxiway system and in the runway queues. Surface emissions from departures are therefore
closely linked to the taxi-out times. At several of the busiest airports, the taxi times are large,
and tend to be much greater than the unimpeded taxi times for those airports (Figure 2). For this
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Figure 1: A schematic of the airport system, including the terminal-area [18].

reason, by addressing the inefficiencies in surface operations, it may be possible to decrease taxi
times and surface emissions. This was the motivation for prior research on the Departure Planner
[12].
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Figure 2: The average departure taxi times at EWR over 15-minute intervals and the unimpeded taxi-out
time (according to the ASPM database) from May 16, 2007. We note that large taxi times persisted for a
significant portion of the day [10].

In the current work, we consider three possible approaches to reduce emissions at airports: the
first is to reduce taxi times by limiting the build-up of queues on the airport surface, the second is to
use fewer engines to taxi (and thereby reduce the fuel burn and emissions), and the third is to tow
aircraft out close to the runway prior to starting their engines. We estimate the potential benefits
of each of these approaches and also assess the operational barriers that need to be addressed before
they can be adopted.

2 Baseline emissions

The baseline aircraft emissions for 2007 were computed using a combination of flight data, airline
fleet data and aircraft engine emissions and fuel burn data.

2.1 Data sources

The flight schedule data was obtained from the Bureau of Transportation Statistics [22]. This data
is the same as the ASQP data [9], and corresponds to “all domestic non-stop flight segments flown



by U.S. carriers with at least 1 percent of passenger revenues in the previous year”. The BTS
records include aircraft tail numbers, scheduled arrival and departure times, origin and destination
airports, the On, Off, Out and In (OOOI) times, and thereby the taxi-in and taxi-out durations.
The aircraft tail numbers in the BTS database are matched with the data in the JP Airline-Fleets
International directory [4], to determine the aircraft model, number of engines and engine models
used for a particular flight segment. In addition, the engine make and model can be matched to
their fuel burn and emissions indices (for different pollutants) using the ICAO Engine Emission
Databank [19]. BTS estimates that there were 10.38 million scheduled domestic passenger revenue
departures in the US in 2007. Of these, there are 7.46 million records in the BTS/ASQP data. 1.57%
of these records lack tail number information, and 0.62% of them lack taxi-out time information.
Ultimately, 5.57 million flights have all the necessary information (taxi-out times, tail numbers,
engine information and emissions indices for HC, CO and NOx), and 5.76 million flights have all
the above information except the HC emissions indices. Therefore, in our assessments, we include
about 77% of all BTS records and 55% of the estimated 10.38 million flights in 2007.

The amount of missing data also differs (quite significantly) from airport to airport. For exam-
ple, Table 3 shows the number of departures for which all the associated data (not including the
emissions indices for HC) is available, the number of departures for which all the associated data
(including HC) is available, the number of BTS departure records and the number of departures
estimated by the Airspace System Performance Metrics (ASPM [10]) database for the top 20 origi-
nating airports (as measured by the number of ASPM departures). In general, we note that the HC
emissions indices alone are missing for many flights, especially at DFW and ORD. A comparison of
the two counts is also shown in Figure 3. We note that the ASPM departure counts are available
for 77 airports (known as the “ASPM 777), while the BTS database contains data from 304 origin
airports.

Airport No. of departures | Fuel/CO/NOx data available HC data available
ASPM | BTS Number | % of ASPM Number [ % of ASPM
ATL 490735 413851 358737 73.1 355517 72.4
ORD 454568 375784 313001 68.9 288407 63.4
DFW 336397 297345 183836 54.6 120058 35.7
LAX 315456 237597 159719 50.6 155718 49.4
DEN 305534 240928 210819 69.0 203035 66.5
TIAH 290527 200420 185925 64.0 184304 63.4
CLT 241322 127108 100565 41.7 99551 41.3
PHX 239472 211072 192035 80.2 190137 79.4
PHL 232042 104063 76478 33.0 74566 32.1
DTW 228255 177478 117656 51.5 116308 51.0
LAS 223126 183668 160323 71.9 159011 71.3
MSP 214251 155846 115589 54.0 113129 52.8
JFK 209500 126366 98043 46.8 97846 46.7
EWR 208583 154113 137614 66.0 135341 64.9
LGA 190948 122899 89597 46.9 81614 42.7
BOS 182759 128320 96561 52.8 94011 51.4
SFO 174249 138491 100386 57.6 97910 56.2
IAD 171294 91048 80113 46.8 79018 46.1
SLC 171128 147808 119799 70.0 118206 69.1
MCO 170533 129778 107712 63.2 105295 61.7

Table 3: Total number of departures in ASPM and BTS databases for different airports. and the flights for
which taxi-time, engine and emissions data are all available.
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Figure 3: Comparison of departures for which all data is available, and total ASPM departure count for
2007.

2.2 Methodology for estimation of baseline emissions

For each flight record in the 2007 BTS database, we estimate the emissions contribution of the
taxi-out portion of the flight. We focus on three pollutant species, namely, CO, NOx and HC. For
each flight, we use the tail number to determine the type and number of engines used, and then
the fuel burn and emissions indices from the ICAO engine databank.

Using the above information, the taxi-out fuel burn of flight ¢ in kg, denoted F'B;, is given by

FBZ':TZ'XNZ‘XFBIZ‘, (1)

where T; is the taxi-out time of flight ¢, V; is the number of engines on flight ¢ and F'BI; is the fuel
burn index of each of its engines (in kg/sec).
The emissions from flight i for each pollutant species j (denoted Ej;, in kg) is given by

Eij = Tz X Ni X FBIZ X EIZ']', (2)

where F1;; is the emissions index for pollutant j from each engine on flight 7, measured in grams
of pollutant per kilogram of fuel consumed. We can sum the above quantities over all departures
in the system or in any particular airport in order to obtain the total fuel burn and emissions.

In reality, the taxi-out emissions from an aircraft depend on factors for which data is not
available, such as the throttle setting, ambient temperature, number of engines used to taxi, etc.
We assume that in the baseline case, all engines are used to taxi-out, and that the throttle setting
is 7% of maximum thrust. Recent experiments have shown that these assumptions may be quite
strong, and that the actual emissions are nonlinear in the low-throttle setting regimes for some



pollutants [14, 15, 16]. We are currently working on leveraging these experimental studies to refine
our emissions estimates. We also note that some flights do already either adopt single engine taxiing,
or stop their engines when a large delay in expected (even away from the gate). In addition, some
flights return to their gates when a large delay is assigned to them. These events are not reported in
the BTS data, and hence we ignore their effects in calculating the baseline fuel burn and emissions.

2.3 Baseline emissions estimates

We present two sets of estimates: the first is an estimate of emissions obtained through the ag-
gregation of estimates from Equations (1-2) for all flights for which data are available; the second
is an estimate obtained by scaling the results from the previous step proportionately to the total
number of flights in the ASPM records. In Figure 4 and the discussion below, “raw” or “unscaled”
refers to the contribution of flights for which all the data is available, while “scaled” implies that
these values have been scaled to the ASPM departure count for airport k£ using the formula

rgscaled _ F B,‘;nscaled X (ASPM departure count of k) 3)
K ~ Number of departures from k with data available

Table 2.3 shows the scaled and unscaled fuel burn and emissions for the top 20 airports (as measured
by the ASPM departure count) along with the unscaled and ASPM departure counts.

Raw emissions (kg)/fuel (gal) Scaled emissions (kg)/fuel (gal) Departure count
HC | CO | NOx | Fuel HC | CO [ NOx | Fuel Unscaled | ASPM

ATL | 193375 | 2039187 | 363479 | 29129468 | 264528 | 2789510 | 497222 | 39847714 358737 490735
ORD | 129900 | 1745597 | 274507 | 21971419 | 188652 | 2535112 | 398664 | 31908856 313001 454568
DFW | 47134 829335 | 150830 | 12232769 | 86249 | 1517580 | 276000 | 22384445 183836 336397
LAX 74677 804811 | 140372 | 10981814 | 147492 | 1589557 | 277244 | 21689837 159719 315456
DEN | 106555 | 1103306 | 166677 | 13549440 | 154427 | 1598990 | 241560 | 19636819 210819 305534
TAH 90296 | 1064689 | 172448 | 13338263 | 141097 | 1663686 | 269468 | 20842412 185925 290527
CLT 56282 575474 92146 7240239 | 135058 | 1380943 | 221119 | 17374126 100565 241322
PHX | 56266 807600 | 165489 | 12353982 | 70165 | 1007096 | 206369 | 15405696 192035 239472
PHL 65161 634558 | 110130 | 8590475 | 197705 | 1925313 | 334146 | 26064371 76478 232042
DTW | 120886 | 742905 | 132092 | 11714156 | 234521 | 1441251 | 256261 | 22725698 117656 228255
LAS 62595 817680 | 165936 | 12466008 | 87115 | 1137988 | 230938 | 17349292 160323 223126
MSP 86185 667450 | 129372 | 10904776 | 159749 | 1237158 | 239799 | 20212643 115589 214251
JFK 93699 | 1067920 | 214886 | 16490657 | 200218 | 2281950 | 459172 | 35237525 98043 209500
EWR | 91208 | 1133733 | 195992 | 15174146 | 138245 | 1718411 | 297067 | 22999614 137614 208583
LGA 72348 694759 | 130470 | 10615395 | 154187 | 1480662 | 278056 | 22623396 89597 190948
BOS 54779 581653 | 106174 | 8402538 | 103679 | 1100883 | 200953 | 15903309 96561 182759
SFO 50997 587693 | 106448 | 8290787 88520 | 1020112 | 184771 | 14391064 100386 174249
IAD 35077 448250 77099 5997524 75000 958428 | 164850 | 12823635 80113 171294
SLC 53653 644433 97057 7597778 76641 920546 | 138642 | 10853117 119799 171128
MCO | 34112 449326 94046 7187196 54007 711387 | 148897 | 11378993 107712 170533

Table 4: Scaled and unscaled fuel burn, emissions and departure counts for the top 20 airports (as measured
by the ASPM departure count).

We also consider potential metrics to compare the relative fuel burn and emissions performance
of different airports. Omne possible approach is to normalize the fuel burn at an airport by the
maximum fuel burn among all airports (i.e., the fuel burn of ATL) and to compare this value with
the departure count at the same airport normalized using the departure count of ATL. This would
allow us to draw conclusions of the form “Airport i consumes a fraction x of the fuel consumption
at ATL, but faces (only) a fraction y of the ATL departure demand”. These metrics are plotted



in Figure 4 (using the unscaled data) and in Figure 5 (using the scaled data). Airports for which
the departure metric (denoted by the lines with markers) is less than the fuel burn or emissions
metric (denoted by the bars) can be considered to have weak emissions/fuel burn performance. We
note that these airports are consistent between the unscaled plots (Figure 4) and the scaled plots
(Figure 5).

We also plot, for each of the top 20 airports, the fraction of the total taxi-out emissions or fuel
burn (from the top 20 airports) associated with that airport and the fraction of the top 20 airport
departure demand that is associated with it. These plots are shown in Figure 6.

3 Single-engine taxiing

Fuel burn and emissions can potentially be reduced if all aircraft were to taxi out using only a
subset of their engines. This translates to using one engine for twin-engine aircraft, and is therefore
referred to as single-engine taxiing. Aircraft engines must be warmed up prior to departure, for
a period that ranges from 2-5 min depending on the engine type. Therefore, even if an engines
power is not required for taxiing, it is assumed that all engines must be on for a minimum of five
minutes before takeoff. Thus, if the taxi time of an aircraft is less than five minutes, a single-engine
taxi-out scenario would not change either the activities of the pilot or the surface emissions of that
flight. Conversely, if an aircraft taxies for longer than five minutes, the emissions are reduced by
the amount of pollutants that one of its engines would produce for the duration of the taxi time in
excess of five minutes (for example, if the taxi time is twelve minutes its emissions will be reduced
by the amount of one engine operating for seven minutes).

This procedure is not recommended for uphill slopes or slippery surfaces, or when deicing
operations are required [2]. Aircraft manufacturers (for example, Airbus) recommend that airlines
adopt single-engine taxiing whenever conditions allow it, and yet few airlines have done so. There
is a potential for significant savings from single-engine taxiing; for instance, American Airlines is
estimated to save $10-$12 million a year in this manner [13].

3.1 Potential benefits of single-engine taxiing

We estimate the theoretical benefits of single-engine taxiing at airports in the US. For each of the
top 50 airports, and for each departure operation at the airport, we estimate the reduction in fuel
burn and different emissions were the aircraft to taxi out with one of its engines off. The engine
start-up time is assumed to be 5 min for all aircraft.

Using the above information, the single-engine taxi-out fuel burn of flight ¢ in kg, denoted
FBZ-Smgle, is given by

FB"8 = (T, x (N; = 1)] + min{T,, 300}) x FBL, W

where T; is the taxi-out time of flight ¢ in seconds, N; is the number of engines on flight ¢ and F'BI;
is the fuel burn index of each of its engines (in kg/sec).
The single-engine taxi-out emissions from flight i for each pollutant species j (denoted Ejj, in
kg) is given by
Eij = ([Tz X (Nz — 1)] + mln{TZ,?)OO}) x FBI; x EIZ'j, (5)

where ET;; is the emissions index for pollutant j from each engine on flight 4, measured in grams
of pollutant per kilogram of fuel consumed. We can sum the above quantities over all departures
in the system or in any particular airport in order to obtain the total fuel burn and emissions from
single-engine taxiing.
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Figure 4: [Bars] Baseline unscaled fuel burn/emissions normalized by the unscaled ATL fuel burn/emissions;

[Line] Raw departure count at airport divided by raw departure count at ATL.

The percentage reductions in fuel burn, HC and CO emissions with respect to the baseline
scenario are shown in Figure 7. For example, at both JFK and PHL, more than a 40% decrease in

taxi-out fuel burn can theoretically be achieved if all aircraft were to taxi with one engine off (as
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[Bars| Baseline scaled fuel burn/emissions normalized by the scaled ATL fuel burn/emissions;

[Lines] ASPM departure count at airport divided by ASPM departure count at ATL.

Figure 5:

opposed to taxiing on all engines), with a 5 min start-up time.
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Figure 7: Potential reductions in fuel burn and emissions from single-engine taxiing (compared to baseline
emissions) at the top 50 airports in the United States.

3.2 Operational challenges

Successful implementation requires improved dissemination of information (for example, knowledge
that an aircraft is 5 min from take-off requires information on the status of the departure queue,

10



downstream airspace conditions, and congestion levels on the surface), as well as strategies to
increase robustness to unexpected events (such as the detection of mechanical problems during
engine start, which would now be closer to the runway, requiring routing of the aircraft back to the
gate, as well as assigning it a later departure time). In Section 8, we present a predictive model
of the departure process that allows us to estimate the taxi-out time for a flight, the state of the
departure queue, etc. In addition, during current operations, fire protection from ground staff is
not available during engine start if it takes place outside the ramp area. The frequency and impact
of such events will have to be evaluated in order to assess the feasibility of single-engine taxiing.
It has also been noted that taxiing out on a subset of engines results in reduced redundancy, and
increases the risk of loss of braking capability and nose wheel steering [2]. Some difficulties on
tight taxiway turns during single-engine taxiing have been reported by pilots. This appears to
be particularly true when there is asymmetry, as in the case of a twin-engine aircraft; it can be
difficult to turn in the direction of the engine that is being used. While taxiing on fewer engines,
more thrust per engine is required to maneuver, especially on breakaways and 180 degree turns.
As a result, care must be taken to avoid excessive jet blast and foreign object damage. For high
bypass ratio engines, the warm-up time prior to maximum takeoff thrust and the cool-down time
after reverse operation have a significant effect on engine life. However, it appears that 5 min is
generally sufficient time for the warm-up process.

4 Operational tow-outs

Another approach that has been proposed to reduce surface fuel burn and emissions is that of towing
aircraft to the runway, rather than using the engines to taxi. This procedure is alternatively known
as dispatch towing. During departure tow-outs, the engines are not turned on until five minutes
before takeoff (that is, for warm-up). The power required to tow the aircraft to the runway is
generated by tugs. As result, aircraft emissions decrease, but tug emissions are introduced.

4.1 Potential impact

Emissions from tugs depend on the fuel that powers the tug as well as the required engine horse-
power. We consider three different tug fuel types: diesel, gasoline, and compressed natural gas
(CNG). We assume that two different brake horsepower (BHP) settings are required for each en-
gine type; one to tow narrow-body aircraft and one to tow wide-body aircraft. The brake horse
power values for each aircraft and tug engine type, and the corresponding fuel consumption, NOx,
and CO emission coefficients are shown in Table 5. The COy emission factors are assumed to be
22.23 1Ib COg/gallon of fuel for diesel tugs and 19.37 Ib CO2/gallon of fuel for gasoline tugs, as
opposed to 20.89 Ib CO2/gallon of jet fuel burned [8].

Aireraft type | Tug fuel type | BHP | M'j°] Sosumpuon gf(gjs'mg g |<BH§Chr>
Narrow body Diesel 175 0.061 11.0 4.0 1.0
Narrow body Gasoline 175 0.089 4.0 | 240.0 4.0
Narrow body CNG 175 -n/a- 6.0 | 120.0 2.0

Wide body Diesel 500 0.053 11.0 4.0 1.0
Wide body Gasoline 500 0.089 4.0 | 240.0 4.0
Wide body CNG 500 -n/a- 6.0 | 120.0 2.0
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Table 5: Tug Brake Horse Power (BHP) specifications and characteristics for different aircraft types.




As in the case of single engine taxiing, we assume that the engine start-up time is 5 min. We
also assume that the tugs travel significantly slower than aircraft taxiing on their own engines; we
model this by assuming that the taxi time of an aircraft being towed is 2.5 times its value otherwise.

Using the above information, the single-engine taxi-out fuel burn of flight 7 in kg, denoted
F B;ug, is the sum of the fuel consumption in the tug and the fuel burn of the aircraft. The tow-out
emissions of pollutant j for flight 7 using a tug type k are denoted Eit;,f, and are given by

Ej% = (Ti x 2.5 x BHPy; x EL'®) + (300 x N; x FBI; x Ely), (6)
where T is the taxi-out time of flight ¢ in minutes (and is greater than 5 min), N; is the number
of engines on flight ¢, FBI; is the fuel burn index of each of its engines (in kg/sec), BHPy; is the
brake horse power of tug type k to tow flight i, EI;; is the emissions index for pollutant j from each
engine on flight 7, measured in grams of pollutant per kilogram of fuel consumed, and Elz?g is the
emissions index for pollutant j from a tug of type k, measured in grams of pollutant per BHP-sec.
We note that these calculations do not include the contribution of the tugs on their return trips to
the ramp areas.

Percentage reduction in fuel burn and emissions from diesel tugs
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Figure 8: Potential reductions in fuel burn and emissions from operational tow-outs using diesel tugs at the
top 15 airports in the United States. Negative values imply an increase in emissions.

4.2 Operational challenges

Although it was pursued in the past by Virgin Atlantic for their 747 fleet, tow-outs had to be
abandoned after Boeing suggested that the nose landing gear on the 747s were not designed to
withstand such loads on a regular basis [1]. This concept is currently being revisited by Airbus,
which is considering other means of dispatch towing which will not impose the same loads on
the nose gear. Our studies have found that before tow-outs are adopted, other factors such as
the emissions characteristics of the tugs (for example, diesel tugs will potentially increase NOx
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Figure 9: Potential reductions in fuel burn and emissions from operational tow-outs using gasoline tugs at
the top 15 airports in the United States. Negative values imply an increase in emissions.

Percentage reduction in fuel burn and emissions from CNG tugs
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Figure 10: Potential reductions in emissions from operational tow-outs using CNG tugs at the top 15 airports
in the United States. Negative values imply an increase in emissions.

emissions), the impact of tow-outs on taxi times and airport throughput (because of reduced speeds:
for example, Virgin Atlantic at Heathrow found a 3x increase on the A340-500 taxi time when

13



compared to the normal dispatch procedure), and information requirements (as in the case of
single-engine taxiing, a good estimate of the take-off time improves the benefit of tow-outs) will
need to be considered. Other operational issues such as communication protocols between the
ATC, the cockpit and the tug operator will also have to be evaluated and addressed. If a viable
operational towing concept is developed before the proposed field trials, we will also evaluate it in
cooperation with the airframe manufacturers. As in the case of single-engine taxiing, tow-outs will
require that (all) the engines be started away from the ramp area, with the associated challenges.

5 Advanced queue management

Another promising mechanism by which to decrease taxi times, and to thereby decrease fuel burn
and emissions, is by limiting the build up of queues and congestion on the airport surface through
improved queue management. Under current operations, aircraft spend significantly longer lengths
of time taxiing out during congested periods of time than they would otherwise. By improving
coordination on the surface, and through information sharing and collaborative planning, aircraft
taxi-out procedures can be managed to achieve considerable reductions in fuel burn and emissions.

5.1 Potential benefits

For example, in PHL, we have estimated that if every departure taxied out for the unimpeded taxi
time (depending on its terminal, season, etc. — approximated by the tenth percentile of ASPM
taxi-out times for the given terminal and season), we would achieve a theoretical reduction in taxi-
out emissions and fuel burn of nearly 60%. Done naively, this would be equivalent to allowing
only one (or very few) aircraft to taxi out at any given time. This would result in a decrease in
airport throughput, and an increase in departure delays. However, we believe that improved queue
management when done right has the potential to decrease taxi-out delays in addition to emissions
and fuel burn.

5.2 Operational challenges

Queue management strategies require a greater level of coordination among traffic on the surface
that is currently employed. For example, if gate-hold strategies are to be used to limit surface con-
gestion, there need to be mechanisms that can manage pushback and departure queues depending
on the congestion levels. In addition, ATC procedures need to also be addressed: for example,
currently, departure queues are First-Come-First-Serve (FCFS), creating incentives for aircraft to
pushback as early as possible. If gate-hold strategies are to be applied, virtual queues of push-
back priority will have to be maintained. We note that airline on-time performance metrics are
calculated by comparing the scheduled and actual pushback times; this again creates incentives for
pilots to pushback as soon as they are ready rather than to hold at the gate to absorb delay. In
addition, gate assignments also create constraints on gate-hold strategies; for example, an aircraft
may have to pushback from its gate if there is an arriving aircraft that is assigned to the same gate.
This phenomenon is a result of the manner in which gate use, lease and ownership agreements are
conducted in the US; in most European airports, gate assignments appear to be centralized and do
not impose the same kind of constraints on gate-hold strategies.

In this work, we focus on modeling the taxi-out process as a queuing network. Our rationale
for applying this modeling approach is the fact that the queues which are formed in the system
during the taxiing process offer a suitable control point, and proper modeling of the queues enables
the application of strategies to control them. Ideally, one would like maintain the surface queues
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as close as possible to the smallest loads which will keep the airport throughput at its capacity
limit. This approach will decrease taxi-out times without sacrificing the airport’s throughput. In
the remainder of this report, we describe such a model of airport taxi-out operations that we have
developed.

6 A queuing model of the departure process

Our primary objective is to construct a model for each airport which describes the departure
process. The desired outputs of such a model include:

e The level of congestion on the airport surface in the immediate future
e The predicted loading of the different surface queues

e The predicted taxi-out time of each departing flight

6.1 Model inputs

The inputs to the model are based on the explanatory variables identified in previous studies
[17]. Idris et al. [17] identified the runway configuration, weather conditions and downstream
restrictions, the gate location, and the length of the take off queue that a flight experiences as the
critical variables determining the taxi time of a departing flight. The length of the takeoff queue
experienced by a flight is defined as the number of takeoffs which take place between the pushback
time of an aircraft and its takeoff time.

The present study is an attempt to construct a predictive model of surface congestion, and the
takeoff queue size is not available as an input. Instead, we use the pushback schedule, which is the
schedule of aircraft pushing back from their gates. We note that we do not predict the pushback
schedule based on the published departure schedule; such models that predict pushback schedules
based on the departure schedule may be found in [21]. Furthermore, we use the general weather
conditions (VFR vs. IFR) and the runway configuration as surrogates for weather and downstream
airspace conditions. To summarize, the inputs to the model are

e The pushback schedule, PS

e The gate location of the departing flight, GL
e The runway configuration, RC

e The reported flight rules (IFR or VFR), F'R
We define

e P(t) = the number of aircraft pushing back during time period ¢. P(t) is an input to the
model.

e N(t) = the number of departing aircraft on the surface at the beginning of period ¢t. N(t) is
the first output of the model, indicating the congestion of departing aircraft on the ground.

e Q(t) = the number of aircraft waiting in the departure queue at the beginning of period
t. The departure queue is defined as the queue which is formed at the threshold(s) of the
departure runway(s), where the aircraft queue for take-off. @(t) is the second output of the
model, and gives the loading of the departure queues.
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e R(t) = the number of departing aircraft taxiing in the ramp and the taxiways at the beginning
of period t (i.e., the number of departures on the surface that have not reached the departure
queue).

e (C(t) = the (departure) capacity of the departure runways during period ¢.
e T'(t) = the number of take-offs during period .

e Ng(i) = the number of departing aircraft on the surface when aircraft 7 pushes back that will
take off before aircraft ¢ (the length of the takeoff queue [17]).

e 7(i) = the taxi time of each departing aircraft. This is the third output of the model.

Using the above notation, the following relations are satisfied:

N(t) = Q@)+ R(t) (7)
N(t) = min(C(t), Q1)) (8)
N({t) = N(t-1)+P{t—1)—T(t—1) 9)

Combining Equations (7) and (9), we get
Qt)=Q(t—-1)—-T{t—-1)+R(t—1)— R(t)+ P(t—1), (10)

which is the update equation of the departure queue.

6.2 Model structure

The three outputs of the model, N(¢), Q(t) and 7(i), are related through the departure process.
The departure process can be conceptualized in the following manner:

Aircraft pushback from their gates according to the pushback schedule. They enter the ramp
and then the taxiway system, and taxi to the departure queue which is formed at the threshold
of the departure runway(s). During this traveling phase, aircraft interact with each other. For
example, aircraft queue to get access to a confined part of the ramp, to cross an active runway
or to enter a taxiway segment in which another aircraft is taxiing. We cumulatively denote these
spatially distributed queues which occur while aircraft traverse the airport surface from their gates
towards the departure queue as Ramp and Tariway Interactions. After the aircraft reach the
departure queue, they line up to await take-off. We model the departure process as a server, with
the departure runways “serving” the departing aircraft. This conceptual model of the departure
process is depicted in Figure 11.

Taxi time
¥ I J \__distributions

I Ramp and
4+ , Taxiway

I
Departure Runway .Departure
Queue  Server jthroughput

Figure 11: Integrated model of the departure process
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By modeling the departure process in this manner, the taxi-out time 7 of each departing aircraft
can be expressed as

T = Tunimpeded T Ttw T Tqueue (11)

The first term of Equation (11), Tynimpeded, reflects the nominal or unimpeded taxi-out time of
the flight. This is the time that the aircraft would spend in the departure process if it were the only
aircraft on the ground. The second term, 74, reflects the delay due to aircraft interactions on the
ramp and the taxiways. In other words, 74, reflects the delay incurred due to other aircraft that are
on their way to the departure queue. The number of such aircraft is given by R(t) = N(t) — Q(t).
The magnitude of this delay will depend on the exact interactions among the taxiing aircraft. The
third term, Tgueue, is the time the aircraft spends in the departure queue. Naturally, the duration of
this time depends on the number of aircraft at the departure queue (Q(t¢)) and the runway service
characteristics. We observe that the taxi time of each departing aircraft depends on the model
inputs and the two other model outputs (N (¢) — Q(t) and Q(t)). In contrast, the number of aircraft
on the ground and in the departure queue, N(t) and Q(t) respectively, may be updated using
Equations (9) and (10) as aircraft take-off and push back. Therefore, assuming that Equation 11 is
an appropriate way to describe the departure process, the model may be built using the following
steps:

1. Model Tynimpedea as a function of the explanatory variables RC' and F'R.
2. Model the dependence of 14, on R(t), given RC and FR.
3. Model the statistical characteristics of the runway service process given RC' and F'R.

Then, given a pushback schedule and gate locations, we can use Equations (9- 11) to get the outputs
of the models.

In order to extract the aforementioned dependencies, we study a dataset of observations from
aircraft taxiing out at an airport. Combining the observations with the explanatory variables, we
can mathematically describe Tynimpeded, Ttw and Tguewe and construct the requisite model.

6.3 Data requirements

Ideally, we would like a dataset which consists of Tynimpeded, Tew and Tgyeue, in order to study how
these variables change with the model inputs. However, this information is not available. The only
information we have for flights departing from an airport of study during a time period consists of

1. Actual pushback time times
2. Actual take-off times

In addition to these, we possess the following information about the explanatory variables
1. Pushback schedules

2. Runway configuration

w

. Reported flight rules, and

4. Gate location for each departing flight
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6.3.1 Data Sources

As seen in Section 2.1, the BTS database offers a wealth of data which enables the study of the
on-time performance of the US 21 top carriers [22]. For every recorded flight, the BTS database
contains the fields (1-2) identified above. However, the airports we consider also serve a signifi-
cant number of flights that are not present in this dataset. These include flights of regional and
international carriers, cargo, general aviation and air taxi operations, and military flights. Such
flights account for 20-35% of the total traffic at some of the airports that we examine (Table 3).
The ASQP database [9] contains departure information aggregated by the number of departures
per 15-minute interval at each airport. While this data resolution is smaller than needed in (1-2),
it complements the BTS data in terms of offering the departure throughput of the airport, the
demand profile over a 15-minute interval and the total number of departures during a time period
of interest (for example, an hour, a day, a month or a year).

Items 2 and 3 were obtained from the ASPM database [10], where runway configurations and
weather conditions are reported in 15-minute intervals. Gate and terminal information can be
obtained from the airline information in some cases; for example, at BOS, the airline operating a
flight is a sufficient proxy for the gate and terminal information because there is no dominant airline
and each major airline uses a spatially proximate and small (less than 10) set of gates. However, in
the case of DTW, NWA uses more than 100 gates which may be separated by as much as 1.6 km.
In such a scenario, the airline assignment alone does not offer enough information on the starting
point of a departing flight. In this case, terminal and gate information from flightstats.com may be
used to supplement the data [6]. In addition, this information can be used to study the interactions
between arriving and departing traffic, gate use constraints, etc.

6.4 Model development for BOS

In this section, we analyze how we can get estimates of the three terms of Equation (11), given a set
of the explanatory variables (RC, RD, TG, PS) for Boston Logan International Airport (BOS). An
inherent difficulty in the model calibration is the poor resolution of the available data: we do not
have observations of Typimpededs Ttw and Tgueue, but instead only the actual pushback and take-off
times of flights. As a result, the calibration of the model makes several assumptions which are
analyzed in the next few sections.

6.4.1 Unimpeded taxi-out times

According to the FAA, the unimpeded taxi-out time is defined as the tazi-out time under optimal
operating conditions, when neither congestion, weather nor other factors delay the aircraft during
its movement from gate to takeoff. The following technique is used to estimate the unimpeded
taxi-out time in the ASPM database:

First, the unimpeded taxi-out time is redefined in terms of available data as the taxi-out time
when the departure queue is equal to 1 AND the arrival queue is equal to 0. Then, a linear regression
of the observed taxi times with the observed departure and arrival queues is conducted, and the
unimpeded taxi time is estimated from this equation by setting the departure queue equal to 1 and
arrival queue equal to 0 [11].

In the present work, we use the observations of [17] that there is poor correlation of the taxi-out
times with arriving traffic, and that the taxi-out time of a flight 7(7) is more strongly correlated to
its take-off queue than the number of departing aircraft on the ground (N (t)).

In figure 12 we show the scatter of 7(i) vs. Ng(i) in BOS for runway configuration 4L, 4R /
4L, 4R, 9 under VFR, as well as the linear regression fit and the smoothing-spline fit.
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Figure 12: 7(i) vs. Ng(i) scatter

The smoothing spline fit indicates that the linear regression is barely appropriate for getting a
good estimation for the unimpeded taxi-out time, since the taxi time does not depend linearly on
the take-off queue. While the linear regression gives a good fit for much of the data, it is not a
good approximation for the regime that we are interested in, namely for low values of the take-off
queue length. We note that in Figure 12, the linear regression fit deviates significantly from the
smoothing spline fit for Ng(i) <= 8. The ASPM database corrects for this effect by excluding
the highest 25 percent of the values of actual taxi time from the regression while estimating the
unimpeded taxi-out times. This step is taken to “remove the influence of extremely large taxi-out
times from the estimation of expected taxi time under optimal operating conditions” [11].

This is an empirical metric, and does not explain why the 75th is an appropriate percentile of the
flights to use (or to exclude congestion effects) or why the bias that the flights under medium-traffic
conditions introduce is not important. Figure 12 suggests that a piecewise linear regression might
be more appropriate. Then, the first line-segment could be used to estimate the unimpeded taxi
time. However, there is no rational for the choice of the number of the segments in the piecewise
regression.

We know that by definition, unimpeded taxi times are observed when neither congestion nor
other factors delay the aircraft during its movement from gate to takeoff. Therefore, we need to
restrict our analysis to small values of Ng(i). Unfortunately, this renders the population size of our
sample small, and we cannot ensure that the statistical significance of the other factors is negligible.
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We also need to address the practical problem of choosing the critical value of Ng(i).
Let us assume that the taxi-out time is of the form

7(1) = po + 1 Ng(3) + W (3), (12)

where Wy, --- W, are independent identically distributed (i.i.d.) normal random variables with
mean zero and variance o2. Then, given Ng(i) and the realized values of 7(i), the Maximum
Likelihood estimates of the parameters pg and p; can be calculated using standard linear regression
formulas.

We start the linear regression 7(i) vs. Ng(i), by keeping Ng(i) <= 3. We use the t-test to
evaluate whether the estimates of p; we get have statistical significance. If not, we increment the
limit of Ng(i) (under which flights are included in the regression analysis) by 1 until we obtain
a non-negative estimate of p;, and the corresponding py. The unimpeded taxi time is therefore
calculated as

Tunimpeded = Po T P1, (13)

and its variance is given by [3]

5,2 = gy () = o+ mNG(0) (14)

For each pair (RC,FR) in BOS, this regression analysis is conducted for each “gate group”, with
the operating airline of a flight serving as a surrogate for the “gate group”. So, for each airline
operating in BOS, we calculate the expected unimpeded taxi-out time.

6.4.2 Identification of throughput saturation points

In order to determine the amount of time that each aircraft will spend waiting in the departure
queue, we need to first determine the statistical characteristics of the runway departure process.
This can be done through the observation of runway performance under heavy loading. Under
such conditions runways operate at their capacity, and by observing the output of the process
the statistical properties of the server (the runways) may be inferred [20]. However, the regimes
in which the runway process is saturated and the runway operates at capacity need to first be
identified.

Following the approach proposed by Pujet [20], we use the number of departing aircraft on the
ground as an indicator of the loading of the departure runway. We define T}, (t + dt) as the moving
average of take-off rate over the time periods (t + dt — n,t +dt —n+1,...,t + dt,...t + dt + n).
The maximum correlation between N(t) and T}, (t) is obtained for n = 9 and dt = 9 for BOS, for
the high throughput configurations used under VFR conditions. This means that the number of
departures on the surface at time t (N (t)), is a good predictor of the number of take-offs during
the time interval (t,¢+ 1,4 2,--- ¢+ 18)!. Under IFR conditions, we obtain the optimal values
(n,dt) = (10, 10) for BOS.

As N(t) increases, the take-off rate initially increases, but saturates at a critical value N*. This
is consistent with the findings of prior studies [21, 20]. Applying similar techniques to BOS data
for the year 2007, we determine the following saturation points for the most frequently used runway
configurations in BOS under VFR conditions (Table 6.4.2).

Figure 13 shows the moving average of the take-off rate as a function of N(¢). The saturation
points are also denoted. We note that the take-off rate initially increases as N(t) increases, but

n a prior study, Pujet estimated that (n,dt) = (5,6)[20]. This discrepancy can be explained by the observation
that his data included only 65% of the flights and because traffic in BOS has risen significantly over the past 10 years.
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‘ Configuration ‘ N* ‘
27, 32 / 33L 21
221, 27 / 221, 22R | 19
4L, 4R / 4L, 4R, 9 | 19

Table 6: Runway saturation points for most frequent configurations used in BOS

subsequently stabilizes at about 0.76 aircraft/min or 46 aircraft/hour. This number can be viewed
as the practical departure capacity of BOS for the runway configuration 4L, 4R / 4L, 4R, 9 under
good weather conditions.

BOS throughput, VFR configuration 4L, 4R | 4L, 4R, 9
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Figure 13: Moving average of take-off rate as function of N(t)

6.4.3 Modeling the runway process

Having identified the regime of operations when the runway loading is high, it is possible to model
the runway departure process itself. One possible approach (adopted by Pujet [20]) is to observe
the take-off rate T),(t + dt) when N(t) is larger than N*, and to then model the runway capacity
as a binomial random variable with the same mean and variance as the observed T}, (t + dt). While
this is convenient for mesoscopic modeling, this approach does not try to reflect the characteristics
of the runway, but instead reproduces the first and second order moments of the training data (a
year of operations). Some of the inherent problems of the above modeling approach (pertaining to
runway performance in particular) were noted by Carr [5].

In this study, we propose an alternate approach to modeling the runway process. By exam-
ining the inter-departure times of aircraft in configuration 4L, 4R / 4L, 4R, 9 at BOS when it is
experiencing high loads (N (t) > 19, it is possible to obtain a histogram of inter-departure times,
as shown in Figure 14 (left).

A 1-minute time resolution is available in the data set. We assume that departures which are
recorded as taking off during the same minute are separated by 30 sec (whereas in reality this could
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be any time between less than a minute). From this histogram, the mean-interarrival departure
time is derived as 1.3 min. We observe that 93% of departures are separated by three minutes or
less. The distribution (during congested operations) is the result of a combination of endogenous
factors such as the departure process (ATC wake vortex separation), and exogenous factors such
as communication delays or interactions with arriving traffic. Since the exogenous factors cannot
be controlled, the distribution in Figure 14 (left) is simplified by assuming that the inter-departure
times take values of either 1, 2 or 3 min. This is also consistent with the observation that the typical
runway occupancy time for commercial air carriers is approximately a minute. The probabilities are
assigned so that the mean inter-departure time is 1.3 min and the 2 min inter-departure time has the
same frequency as in the raw data (Figure 14, right). In this way, we account for the probabilistic
nature of the runway service process, but develop a model which is is more representative of real
operations. Given an estimate of the times at which departing aircraft reach the runway, we can use
this model of runway operations to predict the amount of time that each flight will spend waiting
in the runway queue (denoted Tyycue)-

BOS, VFR conf 4L, 4R | 4L, 4R, 9 BOS, VFR conf 4L, 4R | 4L, 4R, 9
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Figure 14: [Left] Histogram of inter-departure times; [Right] Simplified histogram of inter-departure times.

6.4.4 Modeling ramp and taxiway interactions

The remaining unmodeled term in Equation (11), namely 74, represents the effect of queuing at
the ramp and the taxiways. This term is the most difficult to estimate, since there are no distinct
operating conditions at which it is the dominant term. As a first step, we neglect this term. In other
words, we assume that aircraft travel their unimpeded taxi-out times and then reach the runway
queue where they are processed according to the probabilistic process described in the previous
section.

We test this model on the departure schedule from BOS in 2007 for the time intervals when the
runway configuration 4L, 4R / 4L, 4R, 9 was used under VFR conditions. We eliminate certain
time periods from the data set to remove bias from exogenous factors:

1. Time periods before 6am and after 9pm (overnight), because of the larger numbers of cargo
flights (for which data is not available) and because the less reliable recording of runway
configurations, and

2. The first 30 minutes after a configuration change, to remove artifacts of the transition process.
Figure 15 compares the performance of the model with the observed data.

We observe that the performance of the model deteriorates at medium traffic conditions. This
behavior may be explained through a closer look at the model: aircraft are assumed to reach the
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BOS throughput, VFR configuration 4L, 4R | 4L, 4R, 9
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Figure 15: Actual and modeled variation of the take-off rate as a function of N (t), when taxiway interactions
are neglected.

runway queue in their unimpeded taxi-out times, which are realized in light traffic conditions.
Therefore neglecting taxiway interactions is a reasonable approximation in low traffic. In heavy
traffic conditions, the runway is saturated and the take-off queue is expected to be long, so the
runway queue time is the dominant factor in predicting the total taxi time.

However, at medium traffic conditions, the assumption that aircraft always travel their nominal
taxi time leads to predictions that are more optimistic than in real operations, as seen in Figure
15. This is because the model predicts that aircraft reach the runways at a higher rate than
reality (since they only taxi for their unimpeded times), and do not wait at the runway (since the
runway queues are not saturated). The predicted take-off rates therefore tend to be greater than
the observed rates. In addition, accounting for taxiway congestion effects allows us to obtain better
estimates of the number of aircraft in the taxiway system (R(t)) and in the runway queue (Q(?)).
In particular, a good estimate of Q(¢) will also help in the departure planning process.

We now relax the assumption that the aircraft take just their unimpeded taxi-out time to reach
the runway. Equation (11) is modified so that the travel time of an aircraft from its gate to the
runway queue depends on its unimpeded taxi-out time and on the amount of traffic on the ramps
and the taxiway at the time. The modified equation becomes

T = Ttravel + OéR(t) + Tqueue (15)

The term aR(t) is a linear term used to model the interactions among departing aircraft on the
ramps and taxiways. « is a parameter that depends on the airport and the runway configuration.
Its value is determined through trial-and-error to keep the following metrics as small as possible:

e Mean square error between the actual and the modeled graph of T, (t + dt) vs. N(t).
e Kullback-Leibler (KL) divergence between the distributions of observed and modeled N (t).

We evaluate both metrics because we would like the model to give good estimates of the departure
throughput at given values of N(¢), and to also yield good predictions of the congestion level on
the surface.
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‘ Configuration ‘ « ‘
27, 32 / 33L 0.6
221, 27 / 221, 22R | 0.5
4L, 4R / 4L, 4R, 9 | 0.5

Table 7: « for different BOS runway configurations

For the most frequently used runway configurations in BOS, the estimated values of a are given
in Table 7.
We run the model again using 15 for configuration 4L, 4R / 4L, 4R, 9 under VFR conditions.

BOS throughput, VFR configuration 4L, 4R | 4L, 4R, 9
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Figure 16: Actual and modeled variation of the take-off rate as a function of N (¢), when taxiway interactions
are included.

A comparison of Figures 15 and 16 illustrates the benefits of including the taxiway interaction
term in the expression for taxi-out time. We also note that the variance of the take-off rate predicted
by the refined model is lower than that of the model that neglects the effect of ramp/taxiway
congestion.

6.5 Results of modeling

In addition to the plots of throughput as a function of N(t¢), the typical taxi time distributions
predicted and observed over different ranges of N(¢) can also be analyzed (shown in Figures 17 and
18 for two frequently used runway configurations).

6.5.1 Predicting runway queues and taxiway congestion

It is possible to use Equation (15) with the identified parameters to predict the amount of time
an aircraft will spend taxiing on the taxiway and the amount of time in the runway queue. An
example is shown for a particular configuration at BOS, in Figure 19. We note that as congestion
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Figure 17: Taxi-out time distributions under low (N <= 10), medium (10 < N <= 20) and heavy (N > 20)
departure traffic on the surface for configuration 27, 32 | 33L.
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Figure 18: Taxi-out time distributions under low (N <= 10), medium (10 < N <= 20) and heavy (N > 20)
departure traffic on the surface for configuration 22L, 27 | 221, 22R.

increases, an aircraft can spend more than half of its total taxi time in the runway queue. This
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demonstrates the potential for reducing emissions by controlling the length of the runway queue.

BOS, VFR Configuration 4L, 4R | 4L, 4R, 9
40 T T T

30 I tota! taxitime =
I time in taxiway

time
N
8
T
i

15
N(t)

Figure 19: Estimated time spent by an aircraft transiting the taxiways and waiting in the runway queue for
different levels of surface traffic.

6.6 Model Validation

The model parameters in the previous sections were identified using BOS operations data from 2007.
We validate this model using data from the six months of 2008. We evaluate the performance of
the model in terms of throughput predictions, the frequencies of the predicted and observed values
of N(t), and the distributions of actual and observed taxi times. The validation process consists
of:

1. Using the model with the parameters calculated in Section 6.4 for different configurations
and weather conditions (runway capacity model, a and Ty identified using 2007 data) to
simulate operations with the reported pushback times during first half of the 2008.

2. Comparing the simulation results with the reported departure throughput and taxi-out times
for January-June 2008.

Figure 20 shows the comparison between the observed throughput and the throughput of the
simulated model. We note that there is a difference between the mean and the standard deviation
of the observed throughput and the simulated model at low values of N(¢) for the configuration
22L, 27 / 22L, 22R. However, only 22 out of the 11364 aircraft which operated using this runway
configuration and in VFR conditions in the steady state departed at N(t) = 1. Similarly, only
47 departures were served with only 2 aircraft on the ground (N(¢) = 2). The low number of
operations in this region also explains the large variance of the observed data. Figure 21 shows the
taxi time distributions which result from the model.
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BOS throughput in 2008, VFR Configuration 22L, 27 | 22L, 22R
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Figure 20: Moving average of take-off rate To(t + 9) as a function of N(¢) for configuration 22L, 27 / 22L,
22R in BOS in 2008. The model was derived from a training set of data from 2007.

BOS Taxi-Out Times in 2008, VFR Configuration:22L, 27 | 22L, 22R
T T T T T

o
N

o

e

a
T
1

0.05—

frequency
o
[
T
I I

frequency

0.06 —

frequency
°
o
g
T

i
0

0 10 20 30 40 50 60
taxi out time

Figure 21: Taxi-out time distributions under low (N <= 10), medium (10 < N <= 20) and heavy (N > 20)
surface traffic for configuration 221, 27 / 22L, 22R in BOS in 2008.

7 Management of the pushback queue

The data analysis confirms prior observations [20, 21] that there is a strong correlation between
the number of the aircraft on the ground and the departure throughput, and that there is a critical
number of aircraft on the ground N* at which the departure process gets saturated. In other words,
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increasing the number of the aircraft on the ground any further does not increase the departure
throughput.

Te estimated values of N* for different runway configurations at BOS is listed in Table 6.4.2.
The existence of N* can be explained as follows: initially, as the number of aircraft on the surface
increases, so does the number of departing aircraft. Beyond this threshold value of N, the runway
becomes the defining capacity constraint, and increasing the number of aircraft further does not
increase the throughput of the airport.

We would like to use N* as listed in table 6.4.2 for taxiing operations control. The proposed
algorithm, which can be thought of as virtual departure queuing, can be summarized as follows. At
each time period t,

o If N(t) <= N*,

— If the virtual departure queue (set of aircraft that have requested clearance to pushback)
is not empty, clear aircraft in the queue for pushback in FCFS order

e If N(t) > N*, for any aircraft that requests pushback,

— If there is another aircraft waiting to use the gate, clear departure for pushback, in FCFS
order

— Else add the aircraft to the virtual departure queue.

In other words, when N(t) > N*, we regulate the pushback time of an aircraft unless it may delay
an arrival that is waiting to use the gate. In order to maintain fairness, aircraft which request
pushback clearance and are not cleared immediately form a FCEFS-virtual departure queue. When
the congestion decreases and N (t) <= N*, we allow the aircraft in the virtual departure queue to
pushback in the order that they requested pushback clearance. This approach enables reductions
in fuel burn and emissions, without decreasing the departure throughput. A schematic of the
controlled departure process is shown in Figure 22.
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Figure 22: Integrated model of the controlled departure process

7.1 Potential benefits of advanced queue management strategies

We have developed suitable models of departure operations that allow us estimate the potential
benefits of this strategy. In the following discussion, we present the results for the configurations
“22L, 27 / 22L, 22R”, “4L, 4R / 4L, 4R, 9” and “7, 32 / 33L”, which were used during 62.5% of
VFR flight conditions in BOS. These configurations processed 54% of the VFR departures in 2007.
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We also present the tradeoffs involved in selecting N* at values different from the ones in Table
6.4.2.

First, we compare the actual taxi-out times under configuration 22L, 27 / 221, 22R (VFR) to
the taxi-out times predicted by the model. Since the model is stochastic, the model results are
obtained by averaging the predictions from multiple (10) trials. Extremely congested conditions
(severe outliers) are omitted, since they may be due to exogenous factors such as mechanical
problems or reporting errors. The outliers are defined as values of surface congestion that are
experienced for less than 30 minutes a year.

Total flights departing in configuration | 32738
Observed mean taxi time (min) 20.05
Expected taxi time from model (min) | 19.75

Table 8: Actual and expected taxi times for configuration 22L, 27 / 22L, 22R and VFR.

From Table 8, we see that the results of the model are close to the observed values. Table 9
shows the results of the model in terms of expected taxi-out times, gate holding times and annual
taxi-out time reductions if the advanced queue management strategy were to be implemented over
all occurrences of this configuration in a year. We present the expected taxi times for four different
values of N*, namely: 19,17,15 and 7. The surface saturation point was estimated to be N* = 19
(Table 6.4.2), but we also evaluate the strategies of controlling surface traffic to smaller values of
N* to compare expected benefits and costs. The taxi time savings are calculated by comparing
the expected taxi-out times with and without control (Tables 8 and 9). In Table 9, the expected
departure delay is defined as the sum of expected taxi time and the expected gate holding time. In
other words, it is the estimate of the elapsed time between a flight requesting pushback clearance
and its take off.

| N 10 [ 17 [ 15 ] 7 |
Expected taxi-out time (min) 19.16 | 18.85 | 18.42 | 15.04
Expected gate-holding time (min) 0.57 | 1.10 | 2.41 | 77.70
Total expected departure delay/flight (min) || 19.73 | 19.95 | 20.83 | 92.74
Annual reduction in taxi time (hours) 322 491 726 | 2569

Table 9: Reduction in taxi-out time when N(t) <= N*, for configuration 22L, 27 / 22L, 22R and VFR.

We note that the taxi time savings increase by decreasing the value of N*. These savings are
however at the cost of increasing the total departure delay. We also observe that choosing N* at
the value estimated to be the surface saturation point (19, in this case) decreases the expected
taxi times without increasing the expected departure delays. If we choose a smaller value of N*,
we operate the airport at a smaller throughput than the maximum achievable, and the expected
departure delay increases. A significant portion of the increased delay is incurred at the gate, and
the total taxi-out times and emissions decrease. We also include the extreme case of N* = 7. The
results show that while the taxi-out times decrease significantly, the average delay increases to 77
min per flight as a consequence of a considerable underutilization of resources.

The calculations are repeated for the next two most frequently used configurations (Tables 10
and 11, and 12 and 13).
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Total flights departing in configuration || 23111
Observed mean taxi time (min) 18.31
Expected taxi time from model (min) || 18.19

Table 10: Actual and expected taxi times for configuration 4L, 4R / 4L, 4R, 9 and VFR.

| N* [ 19 | 17 | 15 | 7 |
Expected taxi-out time (min) 17.67 | 17.4 | 16.97 | 13.73
Expected gate-holding time (min) 0.65 | 1.03 | 1.87 | 56.26
Total expected departure delay/flight (min) || 18.32 | 18.43 | 18.48 | 69.99
Annual reduction in taxi time (hours) 200 304 470 | 1718

Table 11: Reduction in taxi-out time when N (¢t) <= N*, for configuration 4L, 4R / 4L, 4R, 9 and VFR.

8 A predictive model of departure operations

Two key advantages of the proposed model are that (1) it offers a novel method that estimates,
at any time, both the number of aircraft in the taxiway system and in the runway queue, and (2)
it allows us to estimate, for each flight, the time of arrival at the departure queue as well as the
wheels-off time.

The data available from ASPM does not allow us to validate all these estimates, since we only
know the pushback and wheels-off times of each flight. However, we believe that the validation
that we have presented using these available quantities suggests that the other estimates, namely,
the states of the runway queue and the time of arrival at the runway queue are accurate as well.
In the future, we would like to validate our estimates of these quantities using a combination of
operational observations and surface surveillance data.

8.1 Estimating the states of surface queues and taxi-out times

Given the times at which flights call for pushbacks clearance, we would like to estimate the amount
of time it will take them to taxi to the runway, the amount of time that they will spend in the
runway queue, the overall state of the airport surface (for example, the number of departures on
the ground), and the length of the departure queue. In order to achieve the above, we consider two
approaches to predicting the desired variables, using Equation 15:

e Model 1 generates Tynimpedea for each flight using a normal random variable with mean and
standard deviation (corresponding to the particular airline) as given by Equations 13 and 14.

e Model 2 assumes the 7ypimpeded Of each airline to be the mean of the random variable, given
by Equation 13.

Figure 23 shows the results of making predictions using the pushback schedule from a 10-hour
period on July 22, 2007, along with observed data. The estimates are obtained through 100-trial
Monte Carlo simulations, and the average and standard deviation of these trials are presented. The
first subplot shows the observed and predicted number of departures in a 15-minute interval, the
second subplot contains the average taxi-out times of the flights that depart in the corresponding
15-minute interval, and the third subplot shows the average predicted departure queue size for each
15-minute interval.

We note that the model predictions match the observations reasonably well. We also compute
the root mean square error (RMSE), the root mean square percentage error (RMSPE), the mean
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Total flights departing in configuration || 16195
Observed mean taxi time (min) 21.06
Expected taxi time from model (min) || 20.90

Table 12: Actual and expected taxi times for configuration 7, 32 / 33L and VFR.

| N [ 21 [ 19 [ 17 [ 7 |
Expected taxi-out time (min) 20.63 | 20.44 | 20.10 | 15.47
Expected gate-holding time (min) 0.39 | 0.83 | 1.63 | 65.95
Total expected departure delay/flight (min) || 21.02 | 21.27 | 21.73 | 81.42
Annual reduction in taxi time (hours) 73 124 216 | 1466

Table 13: Reduction in taxi-out time when N(t) <= N*, for configuration 7, 32 / 33L and VFR.

error (ME), and the mean percentage error (MPE ) between the observed measurements and the
average of the results of the 100 trials.

‘ H RMS Error ‘ RMS % Error ‘ Mean Error ‘ Mean % Error ‘

Model 1 (# of departures) 1.477 0.200 1.171 0.142
Model 2 (# of departures) 1.423 0.186 1.103 0.133
Model 1 (Taxi-out time) 2.222 0.157 1.725 0.119
Model 2 (Taxi-out time) 2.111 0.151 1.627 0.112

Table 14: Evaluation of model predictions using Monte Carlo simulations.

Figure 23 shows that both models have comparable performance. The difference between the
two models is in the way the unimpeded taxi time is generated, and we would expect that as the
number of trials increases, the average of the unimpeded taxi times generated in Model 1 tends
to the deterministic value (average unimpeded taxi time) assumed by Model 2. Table 14 shows
that the errors are also comparable. However, we note that because Model 2 uses a deterministic
unimpeded taxi-out time, estimates from Model 2 will have a small variance than those from Model
1.

9 Selection of candidate locations for evaluating concepts

There are several factors that could determine the choice of airport(s) for a demonstration of
the concepts described in this report. One possible factor is to choose airports were there is the
maximum potential for improvement. Figure 6 shows the variations of the percentage of departure
operations at an airport (as a fraction of all departures in the top 20 airports) vs. the percentage
of fuel burn/emissions during taxi out (as a fraction of the total taxi-out fuel burn/emissions in
the top 20 airports). We note the outliers in this plot, namely, airports at which the fuel burn or
emissions is disproportionate to the departure demand, and in particular JFK, which has the worst
performance by this metric for fuel burn and CO/NOx emissions. We note that the HC emissions
alone look different, with DTW having the most disproportionate impact. In addition, ORD and
ATL would be interesting studies in best-practices, currently having better fuel burn and emissions
performance than other airports.
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Actual and Model Data for July 22nd, 2007
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Figure 23: Prediction of departure throughput, average taxi-out times and departure queue lengths in each
15-min interval over a 10-hour period on July 22, 2007. The error bars denote the standard deviations of
the estimates.

10 Conclusion

This report presented an overview of PARTNER’s Project 21, which tries to identify promising
opportunities for surface optimization to reduce surface emissions at airports. The first part of the
report presented estimates of current fuel burn and emissions impacts of airport taxi-out processes,
evaluated the potential benefits of proposed strategies to reduce them, and identified some of the
critical implementation barriers that need to be overcome prior to the adoption of these approaches
at airports. The second part of the report presented a new queuing network model of the departure
processes at airports that can be used to develop advanced queue management strategies to decrease
fuel burn and emissions. A predictive model that is capable of estimating taxi-out times and the
state of surface queues was also presented. This model has the potential to provide some of the
information that is required to improve coordination of departure processes, and thereby increase
surface efficiency. The next steps include refinement of the emissions inventories using experimental
data, integration with local air quality models, a thorough validation of the predictive model, and
an assessment of the emissions impacts of the proposed queue management strategies.
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